« Ethiopia Leaps | Main | Hybrid Survey »

Approaching Geckomimesis

geckomimetic.jpgIn January, we noted the work of biophysicist Kellar Autumn on an improved understanding of how gecko feet could exhibit such incredible adhesive power, yet leave no residue and even clean themselves during use. Gecko feet have complex microstructures known as setae and spatulae (tiny hairs and the fringes splitting off from them) that make use of Van der Waals force to allow geckos to stick to just about anything. Autumn's ultimate goal is to devise an artificial analogue to gecko adhesion, in order to make (in his words) not just the glue of the future, but the screw of the future: a dry, ultra-strong yet readily detached as needed, residue-free adhesive that works in vacuum, underwater, and on any surface.

But Autumn isn't the only one working on that goal.

On Friday, a research team led by University of Akron polymer scientist Dr. Ali Dhinojwala announced the development of artificial setae and spatulae made of multi-wall carbon nanotubes. What's more, the geckomimetic tubes demonstrate an adhesive force substantially more powerful than gecko feet.

As they summarize in their report in Chemical Communications:

...we have successfully demonstrated that structures found in gecko feet can be fabricated on polymer surfaces by using multiwalled carbon nanotubes. These structures have remarkable adhesion forces at the nanometer level, 200 times higher than that of a gecko foot-hair, and offer excellent potential as dry adhesives for microelectronics and space applications. The polymer used is a glassy PMMA [poly(methyl methacrylite), aka Lucite] but this approach can be applied to elastomeric polymers with different moduli and flexibility. This will provide the flexibility to deform at many different length scales compared to that of gecko foot-hair. We are currently extending our procedure to optimize the nanotube structures, to obtain macroscopic contact areas with high adhesion and different polymer matrices.

As the summary suggests, while they've managed to assemble the artificial gecko hair at the nanoscale, they have yet to make the nanotube setae work at a usable size.

If this seems like just another nanotube story, think for a moment about the implications when this material moves from the research bench to store shelves. These would be adhesive devices -- bandages, "nails," fasteners, seals -- that could withstand hundreds or even thousands of pounds of pressure, but be removed easily with an appropriate twist. And when removed, there's nothing sticky left behind, and the adhesive device could be used again with precisely the same strength. Imagine being able to design something where each component could be adjusted as easily as a sticky note is moved on a sheet of paper -- and yet, in use, the components would hold together tighter than if they were bolted in place. This would be the ultimate utility for "design for disassembly," an enabler for a "cradle-to-"cradle" world.

As this research continues to accelerate, we may soon find ourselves in a world held together by artificial gecko feet.


Listed below are links to weblogs that reference Approaching Geckomimesis:

» Geckomimesis from The Daily Glyph
My friend George Suarez produced a report on Discovery News about this over five years ago, when we were at ABC. Scientists are now close to creating adhesive materials even stronger than the tiny structures on geckos' feet. And I'm... [Read More]

Comments (7)

Justin Minich:

While this is indeed a facinating development in biomimicry, it should be remembered that carbon nanotubes have been found to cause lung cancer in lab rats. The last thing we need is yet another material that could possibly pose a cancer risk to humans. Perhaps a more innocuous substance could be substituted.

Jamais Cascio:

As I recall the research, they were single-wall nanotubes, under conditions that the experimenters note are not analogous to natural exposure, that show in some experiments to have deleterious effects. These are multi-wall nanotubes, attached to polymers (not free-floating).


I can see robot window washers climbing walls some day as rescue robots climb up burning buildings and grab people inside taking em to safety...


or a whole new kind of rock-climbing.


to reiterate concerns raised by #1 i remember reading that some buckyballs dropped into an aquarium (laboratory setting of course) ended up being fatally toxic to the fish.

I too am excited by yet another verse in the "oh, carbon nanotube, what can you not do" ode, but similar odes have been sung in the past, to technologies destructive and abandoned.

I too would love to reap some joy from yet hypothetical marketized C60 nanotube-based applications, but what kind of questions should we be asking, and answering, now, to make sure we don't just wind up with the next massively deployed DDT/MTBE/PCB/Asbestos?

Maybe the first step is make sure that, from a regulatory standpoint, the burden of proof rests with potential marketers of C60-based materials to show that they will be biologically safe, rather than not non-safe, if you will...

The safety and environmental impact on bucky balls, carbon and other nanotubes and ways to reduce any dangers is being researched. For example, one of the chief foci for the Center for Biological and Environmental Nanotechnology(CBEN) is the safety and environmental impact of these new materials. These are not idle questions and work is being done to answer them.

In fact, going beyond buckyballs and tubes, more futuristic applications of nanomaterials science are being examined by organizations like the CRN and the Foresight Institute.

Erik Ehlert:

If this gecko stuff is a health risk, maybe we should just stick with velcro...(pause for theatrical effect)...

Get it? "STICK" with velcro? HAHAHAHAHAHA!

OK, now I'll go back to my desk job.


This page contains a single entry from the blog posted on August 15, 2005 5:23 PM.

The previous post in this blog was Ethiopia Leaps.

The next post in this blog is Hybrid Survey.

Many more can be found on the main index page or by looking through the archives.

Powered by
Movable Type 3.34